Discretization-Invariant MCMC Methods for PDE-constrained Bayesian Inverse Problems in Infinite Dimensional Parameter Spaces
نویسنده
چکیده
In this paper we target at developing discretization-invariant, namely dimension-independent, Markov chain Monte Carlo (MCMC) methods to explore PDEconstrained Bayesian inverse problems in infinite dimensional parameter spaces. In particular, we present two frameworks to achieve this goal: Metropolize-then-discretize and discretize-then-Metropolize. The former refers to the method of first proposing a function-space MCMC method for the Bayesian inverse problem under consideration and then discretizing both of them. The latter, on the other hand, first discretizes the Bayesian inverse problem and then proposes MCMC methods for the resulting discretized posterior probability density. In general, these two frameworks do not commute, that is, the resulting finite dimensional MCMC algorithms are not identical. The discretization step of the former may not be trivial since it involves both numerical analysis and probability theory, while the latter may not be discretization-invariant using traditional approaches. This paper develops finite element (FEM) discretization schemes for both frameworks so that both commutativity and discretization-invariant are attained. In particular, it shows how to construct discretize-then-Metropolize approaches for both Metropolis-adjusted Langevin algorithm and hybrid Monte Carlo method that commute with their Metropolize-then-discretize counterparts. The key that enables this achievement is a proper FEM discretization of the prior, the likelihood, and the Bayes’ formula, together with a correct definition of quantities such as gradient and covariance matrix in discretized finite dimensional parameter spaces. Numerical results for oneand two-dimensional elliptic inverse problems with up to 17899 parameters are presented to support the proposed developments.
منابع مشابه
FEM-Based Discretization-Invariant MCMC Methods for PDE-constrained Bayesian Inverse Problems
We present a systematic construction of FEM-based dimension-independent (discretization-invariant) Markov chain Monte Carlo (MCMC) approaches to explore PDE-constrained Bayesian inverse problems in infinite dimensional parameter spaces. In particular, we consider two frameworks to achieve this goal: Metropolize-then-discretize and discretize-then-Metropolize. The former refers to the method of ...
متن کاملA Stochastic Newton MCMC Method for Large-Scale Statistical Inverse Problems with Application to Seismic Inversion
We address the solution of large-scale statistical inverse problems in the framework of Bayesian inference. The Markov chain Monte Carlo (MCMC) method is the most popular approach for sampling the posterior probability distribution that describes the solution of the statistical inverse problem. MCMC methods face two central difficulties when applied to large-scale inverse problems: first, the f...
متن کاملAccelerating Mcmc with Active Subspaces
The Markov chain Monte Carlo (MCMC) method is the computational workhorse for Bayesian inverse problems. However, MCMC struggles in high-dimensional parameter spaces, since its iterates must sequentially explore a high-dimensional space for accurate inference. This struggle is compounded in physical applications when the nonlinear forward model is computationally expensive. One approach to acce...
متن کاملA path-integral approach to Bayesian inference for inverse problems using the semiclassical approximation
We demonstrate how path integrals often used in problems of theoretical physics can be adapted to provide a machinery for performing Bayesian inference in function spaces. Such inference comes about naturally in the study of inverse problems of recovering continuous (infinite dimensional) coefficient functions from ordinary or partial differential equations (ODE, PDE), a problem which is typica...
متن کاملGeometric MCMC for infinite-dimensional inverse problems
Bayesian inverse problems often involve sampling posterior distributions on infinite-dimensional function spaces. Traditional Markov chain Monte Carlo (MCMC) algorithms are characterized by deteriorating mixing times upon meshrefinement, when the finite-dimensional approximations become more accurate. Such methods are typically forced to reduce step-sizes as the discretization gets finer, and t...
متن کامل